Sales and Markup Dispersion: Theory and Empirics

Quantifying Misallocation with CREMR Demands

Monika Mrázová J. Peter Neary Mathieu Parenti

January 17, 2024

Section 4 proposes to characterize misallocation by comparing the distribution of firms' output in the market equilibrium with that of a social planner. The social planner takes as given the number of entrants N_{e} and the productivity of the cutoff firm $\underline{\varphi}$.

Subsection 4.1. shows how to derive the distribution of optimal output across firms and subsection 4.2. illustrates this methodology under additively-separable CREMR preferences. The application to CREMR conducted in subsection 4.2 however assumes further that the planner allocates the same output to the marginal firm \underline{x} as the market. This additional constraint need not hold in general in a single-sector economy with a fixed labor supply. ${ }^{1}$ Absent any fixed cost of production $(f=0)$, it holds exactly when CREMR preferences are embedded in a quasi-linear setting e.g. when preferences are given by $x_{0}+\int_{i \in X} u(x(i)) d i \equiv$ $x_{0}+N_{e} \int_{\underline{\varphi}}^{\infty} u(x(\varphi)) \check{g}(\varphi) d \varphi$ where $u($.$) is given p. 1766$ and x_{0} is the usual Hicksian-composite good produced under pure and perfect competition.

The quantitative analysis conducted in 6.3. should be interpreted under these assumptions. The theoretical minimum mark-up then becomes $\underline{m}=1$ and the CREMR markup distributions need to be estimated under this constraint. As shown in Table 1 below, the implications of this constraint are insignificant and our result is unchanged: the market equilibrium has over 5.2 times as many firms that are "too small" relative to the optimum.

Table 1: Estimated Markup Densities Given Assumptions about Productivity (Pareto (\mathcal{P}) or truncated Lognormal $(t \mathcal{L N}))$ and CREMR Demands with $\underline{m}=1$

Model	Markup PDF $b(m)$	Estimated Parameters	x_{c}	$J\left(x_{c}\right) / J^{*}\left(x_{c}\right)$
CREMR $+\mathcal{P}$	$\frac{k((\sigma-1))^{\frac{k}{\sigma}}}{(\sigma-1) m^{2}}\left(\frac{(\sigma-1) m}{m+\sigma-m \sigma}\right)^{\frac{\sigma-k}{\sigma}}$	$\sigma=1.111$ $k=1.231$	1.465γ	5.256
CREMR	$\frac{e^{-\frac{\left(\log \left(\frac{\sigma}{m+\sigma-m \sigma}-1\right)-\tilde{\mu}\right)^{2}}{2(\sigma s)^{2}}}}{\sqrt{2 \pi m m s(m+\sigma-m \sigma)}}$		$\tilde{\mu}=-49.760$	
$1-\Phi\left(\frac{\log (\sigma-1)-\tilde{\mu}}{\sigma s}\right)$	$s=6.008$	1.469γ	5.253	
$+\mathcal{L N}$		$\sigma=1.110$		

[^0]
[^0]: ${ }^{1}$ Note that the methodology detailed in 4.1. holds generally even in a single-sector economy with fixed and binding labor supply.

